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SUMMARY

The existence of shock–turbulent boundary layer interactions lead to very complicated flow phenomena
and pose a challenge for numerical simulation. In this paper, two turbulence models, the Baldwin–Lo-
max (B–L) model and the Johnson–King (J–K) model, which were originally developed for simple
external flow simulation, are modified to model complex high-speed internal separated flows. The full
Navier–Stokes solver used in this paper is based on a cell-centered finite volume method and multistep-
ping time marching scheme. Both implicit residual smoothing and local time stepping techniques are
incorporated to accelerate the convergence rate. To ensure the numerical stability with the present explicit
scheme, a point-implicit treatment to the source term in the ordinary differential equation (ODE) of the
J–K model has been developed and has proved to be very effective in modeling such a complex flow. An
arc-bump channel flow case has been studied. Comparisons of computed results with experimental data
show that the present solver, with the modified turbulence models, predicts the shock and the flow
separation very well. The J–K model is found to predict the size of the separation bubble with a higher
accuracy. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: turbulence modeling; internal flow; flow separation; shock–boundary layer interaction; finite volume
method

1. INTRODUCTION

High-speed turbulent flows in ducts can be found in various engineering applications, such as
the propulsion system of aircraft. The main difficulties in numerically simulating such flows
stem from the complexity of the flow physics. Both the complicated geometry of the flow
domain and the compressibility of the flow, can lead to flow features such as shock,
shock–boundary layer interactions and subsequent flow separation. The interaction between
shock and boundary layer often occurs in transonic turbulent flow cases. For the simulation of
these flows, turbulence modeling has a crucial influence on the predictive capability of any
solver. In the present research, a quasi-three-dimensional (Q3D) arc-bump channel flow is
investigated by using the modified Baldwin–Lomax (B–L) and Johnson–King (J–K) models.

The Baldwin–Lomax model [1] was proposed in 1983 and has been mostly applied in
external turbulent flows, both incompressible and compressible. Its advantages are its simplic-
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ity and, in some sense, generality. In many practical engineering computations, this model
has played an important role. For some complicated flows, however, it is also necessary to
introduce some modifications to this model in order to obtain satisfactory results. It is
well-known that the B–L model is an equilibrium turbulence model due to the assumption
of a balance between the production and dissipation of turbulence. But for most flows, this
assumption is not valid and the diffusion and convection of turbulence must be taken into
account. On the other hand, if the flow has separation, the B–L model will lead to an
incorrect evaluation of the turbulent viscosity. Several modifications have been proposed to
overcome these deficiencies of the model. Some of them are adopted in this paper to
improve the capability and efficiency of the present solver.

Drawbacks of the B–L model are obvious, as mentioned above. To consider the influ-
ence of the diffusion and convection of turbulence, a new algebraic model was proposed,
based on the B–L model, by Johnson and King [2] in 1985. In this model, an ordinary
differential equation (ODE) is used to describe the history effect of turbulence. Therefore,
the J–K model is theoretically closer to the flow physics than the B–L model. When the
J–K model was applied to some separated flow computations, the results were much better
than those by the B–L model. Since both models were originally proposed to tackle
external turbulent flow problems, certain modifications are necessary for their applications
to internal flows.

Bump channel flows have been widely used as benchmarks for validating various solvers;
this class of flow has complicated physical phenomena such as shock and flow separation,
induced by the streamline curvature and/or the shock–boundary layer interaction [3,4]. All
of these features are severe challenges to turbulence modeling, as well as the numerical
strategy. In the present study, an arc-bump channel flow [5] is investigated by an explicit
solver with two kinds of turbulence models: the B–L model and the J–K model. The
problems encountered in the present computation are due to the flow complexity and the
existence of multiple walls. In this study, the main drawbacks of both models are discussed
and some solutions proposed by other researchers are incorporated. A separated-wall
integration strategy is presented here to deal with multiple walls in the channel flow
computation using the J–K model. A point-implicit treatment to the source term of the
ODE in the J–K model is proposed and shown to be necessary to obtain stable and
convergent solutions. The computed result shows a satisfactory agreement with the experi-
mental data.

2. THE MATHEMATICAL DESCRIPTION AND NUMERICAL ALGORITHMS

2.1. Go6erning equations

The Reynolds-averaged Navier–Stokes (RANS) in a Cartesian co-ordinate system can be
written as

(W
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where W is the vector of dependent variables, Fc, Gc and Hc are the convective flux vectors,
and Fv, Gv and Hv are the viscous flux vectors. They are given by
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where the following definitions are used:

Fb c=Fcib +Gcjb +Hckb ,
Fb v=Fvib +Gvjb +Hvkb ,
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In integral form, Equation (1) can be rewritten as

(

(t
&

V
W dV+

&
(V

Fb c ·n� s dS=
&
(V

Fb v ·n� s dS. (3)

The above system of equations is closed by the state equation of a perfect gas, i.e.

p=r(g−1)e. (4)

All the governing equations are written in non-dimensional form by using a reference length
and free stream flow conditions.

2.2. Discretization

The cell-centered finite volume technique is employed to discretize the special operators in
the governing equations in integral form. This reduces the governing equations to a set of
ODEs, which are in turn, solved by an explicit multistage Runge–Kutta time marching scheme
proposed by Jameson et al. [6]. The three-dimensional flow domain is divided into a large
number of hexahedral subdomains or cells. The integral form accepts the existence of flow
discontinuities in the flow field, and the finite volume approach ensures the conservation of
mass, momentum and energy over all these small finite volumes, while the average rate of
change of W in each are calculated. After the finite volume discretization based on the
center-difference scheme, the integral Navier–Stokes equation (3) becomes

d
dt

(W)k= −
1

DVk

� %
6

f=1

(Fb c ·n� DS)f− %
6

f=1

(Fb v ·n� DS)f
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= −

1
DVk

[Qc(W)−Qv(W)]

= −R(W)k. (5)

Here the net convective and viscous fluxes are

Qc(W)= %
6

f=1

(Fb c ·n� DS)f, Qv(W)= %
6

f=1

(Fb v ·n� DS)f. (6)
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In the above equations, DVk is the volume of a cell k and DSb =n� DS is the area vector of one
of its six cell faces, with f denoting the fth one and its direction being outward normal to f.
n� is the outward normal vector on the face S. R(W) is the vector of residuals. Fluxes at cell
surfaces are evaluated by the center-difference scheme.

The viscous fluxes required on the cell interfaces contain first derivatives of flow variables,
which are calculated using a local co-ordinate transformation from Cartesian co-ordinates
(x, y, z) to the curvilinear co-ordinates (j, h, z) in the three grid line directions. For a scalar f,
its derivative with respect to xi (i=1, 2, 3) on face f is calculated as

(fxi
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The derivatives fj, fh and fz are approximated using finite differences. For example,
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Here quantities located at corners are calculated by averaging those of the surrounding four
cells. The metric coefficients jxi

i found in the above equations can be calculated as
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,

(J−1)f= (r� z×r� j · r� h)f.

It should be noted that (I, J, K) denotes the centre of the cell (I, J, K), while (i, j, k) represents
a grid node at the lower-left corner on the south face of cell (I, J, K). The three covariant-
based vectors are computed on the face f in order to calculate the above metric coefficients; for
instance, the three vectors on face f, in order to calculate the above metric coefficients.

2.3. Artificial 6iscosity

In order to avoid odd–even point decoupling and oscillations near shockwaves, artificial
viscosity is needed in the numerical solutions of RANS equations, although theoretically it is
unnecessary. Artificial dissipation terms used in this report are based on the work of Jameson
et al. [6]. An adaptive blending of the second and fourth differences are used to construct the
artificial viscosity that provides third-order background dissipation in smooth regions and
first-order dissipation at shocks. The dissipation terms can be written as

DI+1/2(W)=max
� M

M�

, 1
�

l( I+1/2
j [e I+1/2

(2) dWI+1/2−e I+1/2
(4) (d2WI+1−d2WI)], (7)
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where d and d2 are the first- and second-center-difference operators. l( j is a scaling factor
based on the spectral radii of flux Jacobian matrix in the j-direction. The pressure is used as
a sensor for shocks and so the coefficients e (2) and e (4) are determined by

e I+1/2
(2) =k (2)max(nI−1, nI, nI+1, nI+2), (8)

e I+1/2
(4) =max(0, k (4)−e I+1/2

(2) ), (9)

where k (2) and k (4) are constants.
The value ranges of 1/2Bk (2)B1 and 1/512Bk (4)B1/64 are commonly used in calcula-

tions. The shock sensor is defined as

nI=
)pI+1−2pI+pI−1

pI+1+2pI+pI−1

)
. (10)

The dissipation terms in the h- and z-directions are defined in a similar way. It should be
noted that (I, J, K) denotes the center of a cell.

2.4. Time stepping scheme

The spatially discretized Equation (5) is a system of ODEs in time that are integrated with
a five-stage Runge–Kutta scheme. A general m-stage scheme to advance solutions from the
nth time step to the (n+1)th step, given as n from the nth time step to the next step, can be
written as

W (0)=W n,
W (1)=W (0)−a1DtR (0)(W),

·
·
·

W (m−1)=W (0)−am−1DtR (m−2) (W),
W (m)=W (0)−amDtR (m−1)(W),

W (n+1)=W (m),

where

R (1)= [(Qc(W (0))−Qv(W (0)))/DVk−D(W (0))],

and

R (q)= [(Qc(W (q−1))−Qv(W (q−1)))/DVk−D(W (1))], q\1.

For a five-stage scheme, the stage coefficients are

a1=1/4, a2=1/6, a3=3/8, a4=1/2, a5=1.

In the present code, several approaches have been adopted for the calculation of viscous
terms and artificial viscosity terms. One is that the viscous fluxes are updated at every time
step, while artificial viscosity is only calculated at the first stage and then frozen for the rest of
the stages. For different flow, the careful use of these approaches would result in the fastest
convergence.
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2.5. Acceleration techniques

2.5.1. Local time stepping. Local time stepping is used to accelerate the convergence to
steady state solutions. This means that as large a time step as possible, at each cell, is used,
unless the calculation fails to be convergent to the true physical solution. The length of the
local time step at a cell is determined by the local values of the dependent variables.

2.5.2. Implicit residual smoothing. The basic idea of implicit residual smoothing is to use an
implicit averaging calculation of residuals for increasing the maximum CFL number. Nor-
mally, the CFL number can be increased by a factor of 2 or 3. The implicit smoothing
equation can be expressed as a factorized form,

(1−eid i
2)(1−ejd j

2)(1−ekdk
2)R( (W)=R(W), (11)

where R( (W) is the smoothed residual, R is the original residual coefficient for the three grid
line directions. ei, ej and ek are the smoothing coefficients for the three grid line directions. In
some viscous flows, high aspect ratio cells have to be used to resolve the boundary layer or
viscous sublayer. In this situation, the constant smoothing coefficients in Equation (11) should
be replaced by the variable ones based on the spectral radii in the three directions.

In the present study, the implicit residual smoothing is applied to the first, third and fifth
stages only. Numerical tests have proved that this treatment has no effect on the robustness of
the scheme.

3. TURBULENCE MODELS

3.1. The B–L model

3.1.1. Formulations. The B–L algebraic turbulence model [1] is one of the simplest eddy
viscosity models, where the turbulent viscosity is algebraically modeled in terms of flow
geometry and mean flow variables, and the influence on the mean flow equation by the
turbulent kinetic energy is neglected. It is a two layer model, where the turbulent viscosity in
the inner layer is determined by using the Prandtl mixing length, and the viscosity in the outer
layer is determined from the mean flow and a length scale. The strain rate parameter in the
Prandtl mixing length model is replaced by the magnitude of the vorticity.

In the B–L model, the turbulent viscosity is given by

mt=
! (u t)i, n5nc

(m t)0, n]nc

, (12)

where n is the normal distance to the wall and nc is the smallest value of n at which the inner
and outer viscosities are equal. In the inner region of the boundary layer, the viscosity is

(mt)i=rl2�v� �, (13)

where

l=kn(1−e−n+/A+
), (14)

n+ =

rwtw

mw

n, (15)

and
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v� =9×Ub . (16)

In the outer region,

(mt)o=KCcprFwakeFKleb(n), (17)

where Fwake is the smaller of! nmaxFmax

Cwknmax(u2+62+w2)/Fmax

. (18)

The term nmax is the value of n corresponding to the maximum value of F, Fmax across the
layer, where

F(n)=n �v �(1−e−n+/A+
) (19)

and

FKleb=
�

1+5.5
�nCKleb

nmax

�6n−1

. (20)

The constants used here are A+ =26, Cwk=0.25, Ccp=1.6, k=0.41, CKleb=0.3, K=0.0168.

3.1.2. Drawbacks and modifications of the B–L model. Some problems with the B–L
turbulence model are encountered when it is applied to the computation of internal flows,
especially high-speed turbulent flows that may have flow separations, shockwaves and even
secondary flow. Here, these drawbacks are highlighted and modifications to it are intro-
duced.

(1) In the flow separation region, it is difficult to determine the maximum value of F(n)
because more than one local maximum value can be found across the boundary layer. If a
global maximum value is used, the computed turbulence viscosity might be wrong, because the
one needed in this model is the first maximum value of F(n) near the wall. This problem was
first analyzed by Degani and Schiff [7]. They found that the behavior of F(n) is different for
the attached flow region and the separated flow region. They proposed a modification to the
original B–L model. A peak value is decided when the value of F(n) drops to 90% of the local
maximum value.

(2) In the original B–L model, ut was defined as the wall shear velocity, 
tw/rw. This
definition will introduce an incorrect evaluation of turbulence viscosity at the wall when there
is flow separation. In fact, ut=
tw/rw is zero at a separation point. This will result in mt=0
in this region. Following the suggestion proposed by Marx [8], a different definition of ut is
used here, ut=max 
(m �v �/r). This ensures ut is greater than zero.

Another solution for this problem, given by Radespiel [9], is to define ut by using the
maximum value of the laminar shear stress across the boundary layer, as ut=
tl,max/rw. This
is also aimed at ensuring a non-zero value of turbulent viscosity at a separation point.

(3) Since the B–L model is an equilibrium model, it is not suited for separated flows. In the
separation region, the production and dissipation of turbulence are not in equilibrium, so the
diffusion and convection of turbulence should be taken into account. It is suggested that some
non-equilibrium models ought to be applied to obtain more accurate results. Goldberg and
Chakravarthy [10] proposed an algebraic k–e turbulence model in which the inner layer
viscosity is evaluated by a new formula instead of the Baldwin–Lomax one. In this study, both
Degani and Schiff’s [7] and Marx’s [8] modifications have been employed.
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3.2. The J–K model

3.2.1. Formulations. Algebraic turbulence models perform unsatisfactorily in the calculation
of separated flows because of the assumption that the local turbulent production and
dissipation rates are in equilibrium. For better flow predictions, non-equilibrium effects must
be considered to properly describe the actual physical phenomenon. The J–K model is a
non-equilibrium turbulence model, first proposed by Johnson and King [2] for two-dimen-
sional external flows. Since this model takes the history effects of the turbulence into account
with an ODE for the maximum of Reynolds shear stress, it has been found to perform well for
transonic flows with strong viscous inviscid interactions [11]. Abid et al. [12] extended the J–K
model to three-dimensional thin shear layer flows, and used it to calculate separated transonic
wing flows. Their results showed that the non-equilibrium form does play an important role in
accurately predicting the transonic separated flows.

In the J–K formulation, the inner layer viscosity is calculated by using a completely
different way while the outer layer viscosity computation still remains the same as that used in
B–L model, except for a multiplying factor s. In the outer layer, the viscosity is given by

(mt)o=srKCcpFwakeFKleb(n). (21)

The inner layer viscosity can be calculated as

(mt)i=rD2kntm
1/2. (22)

Then, the eddy viscosity is expressed as a functional form,

mt= (mt)o[1−exp(− (mt)i/(mt)o)]. (23)

Here tm is the maximum Reynolds shear stress, n is the local normal distance from the wall,
k is the von Karman constant (=0.418), and D is the damping factor given by

D=1−exp(−rwn max(um, uw)/mwA+), um=
tm, uw=
tw/rw, (24)

where A+ =17 and tw is the wall shear stress.
The Reynolds shear stress is evaluated by

t=mt�v� �/r. (26)

The maximum Reynolds shear stress, tm, is obtained by solving an ODE given in Reference [2].
In the three-dimensional case, this equation is given as [12]

(g
(t

+Um

(g
(x

+Vm

(g
(y

+Wm

(g
(z

+G=0, (27)

here reference quantities g and geq are introduced as g=tm
−1/2 and geq= (tm,eq)− l/2. The source

term G is defined as

G=
a1

2Lm

�� g
geq

−1
�

−
CDLm�1−s1/2�

a1d(0.7−nmax/d)
n

. (28)

The dissipation length scale Lm is expressed as

Lm=min(0.4nm, 0.09d). (29)

The coefficient s in Equation (21) is introduced in the evaluation of (mt)o to expose a match
on two values of the maximum shear stress, one based on Equation (26) and the other
obtained from the solution of the differential equation (27). At a new time level, the s is
updated using the following:
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s (n+1)=s (n) tm

(mt�v �/r)max. (30)

3.2.2. Some notes on the J–K model. The J–K model presented above is not the original one
developed by Johnson and King [2]. Here it has been extended by Abid [12] and Radespiel [9]
to three-dimensional computations. Further modifications have been made by other re-
searchers. Marx [8] highlighted a problem arising in the evaluation of the maximum m �v �/r
and has given a detailed discussion on the behavior and function of m �v �/r. This is quite
similar to the problem with F(n), which has been reviewed in Section 3.1.2. However, no
general way could be found to solve this problem. Johnson and Coakley [13] proposed some
modifications to the original model to improve the predictions of skin friction. They suggested
that the eddy viscosity evaluation can be done using

mt= (mt)o tanh[(mt)i/(mt)o],

and 
(rm/rw)um should be used instead of um. As for the inner layer viscosity, it’s formula was
modified as

(mt)i= (1.0−g2)[(mt)i]M−L+g2[(mt)i]J−K,

where the subscript M–L means using the mixing length model and J–K means using the
Johnson–King model. The newly introduced quantity g2 was formulated as

g2= tanh
� n

Lc

�
,

Lc=

rwutLm


rwut+
rmum

.

Another suggestion was proposed as to the source term in the ODE. In the attached flow
region, the second term in Equation (28) should be set to zero.

In this paper, all the above mentioned modifications to the J–K model have been adopted.
The computed results show that predictions of pressure distribution on walls and the skin
friction have been much improved.

3.3. Special treatment of multiwall situations

When a B–L or a J–K model is used for modeling internal flows, a problem might arise due
to the existence of multiwalls. In the B–L model, there are two quantities related to the wall
surfaces: n and F(n), while the J–K model requires an integration of the ODE on a
corresponding wall.

The simplest way is to use the shortest distance among those from different walls involved
in the flow, and the final viscosity is also calculated referring to the corresponding wall. For
some cases, e.g. 2D channel flow, the error may have no significant effect on the results.
However, for backward-facing step flow or rectangular duct flow, where more than two walls
exist, other methods [10,14] have to be applied for providing a more accurate approximation.
In the J–K model, the shortest distance is first determined and the corresponding wall is
chosen for the integration of the ODE over all the boundary cells. All the relevant quantities
in the ODE are projected onto this corresponding wall surface. Then the solution can be
obtained by the five stage Runge–Kutta time stepping scheme.
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3.4. Point-implicit treatment to source terms

The ODE in the J–K model can be rewritten in the following integral form:

d
dt

&
V

g dV+
&
(V

Vb m ·n� dS=
&

V
−G dV, (31)

where Vb m={Um, Vm, Wm}. The subscript m means that the velocity components are those in
the cell where the Reynolds stress reaches its maximum value. The integration of Equation (31)
is carried out over the surface cells on a solid wall. Therefore, the discretized form of Equation
(31) can be written as

Dg
Dt

= −
Qg

DV
+SG, (32)

where DV is the volume of a cell on the wall surface and SG is the source term in the ODE,
SG= −G. The flux Qg is defined as

Qg= %
4

f=1

(Vb m ·n� DS)f ;

here no flux calculation is needed at the two cell faces that are parallel to the wall surface.
It has been found that the explicit solutions of turbulence transport equations might

encounter instability problems caused by source terms in these governing equations. The
explicit numerical method for the ODE in the J–K model is found to be inadequate in
obtaining a converged solution. Therefore, a point-implicit treatment is introduced for the
source term in the ODE. This can be expressed as

Dg
Dt

= −
Qg

n

DV
+SG

n+1. (33)

Here, the source term SG is treated implicitly. By using the Taylor expansion, SG at the n+1
time step can be evaluated as

SG
n+1=SG

n +
(SG

(g
(gn+1−gn).

Then, Equation (33) becomes

Dg
Dt

=
Rg

n

1−Dt (SG/(g
, (34)

where Rg
n=Qg

n/DV+SG
n and (SG/(g is easily obtained by

(SG

(g
=

a1

2Lm

. (35)

In the time stepping procedure, the integration of Dg/Dt can be divided to five stages, similar
to that in the solution of Equation (5) for the mean flow. The numerical result shows that the
present treatment is very effective in obtaining the converged solution.
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4. NUMERICAL RESULTS AND DISCUSSION

4.1. Code 6alidation

A two-dimensional flat plate turbulent boundary layer flow is first used to validate the code
which incorporates the modified B–L and J–K models and the numerical strategies for the
J–K model. The inflow Mach number is 0.3. The grids are 48×40×4 and only stretched
along the normal direction to the plate wall. A two level multigrid is used to obtain a faster
convergence. The reduction of the residual order is above 4. Figure 1 and Figure 2 show the
computed velocity profiles compared with the experimental log law curve, using both the B–L
and the J–K models with their modifications.

4.2. Arc-bump channel flow case

A two-dimensional turbulent bump flow case has been investigated by Liu [5] and Liu and
Squire [4], both by experimental measurements and by numerical simulations. However, the
numerical methods adopted in their study did not have the capability to predict the flow
separation. To improve the performance of numerical simulation, and also to verify the
validation of present turbulence models and the special treatment to them, this flow case is
again studied here by the present method with different turbulence models. A 148×60×2 grid
(shown in Figure 3) is used for the discretization of the flow domain which has an arc-bump
with its chord length, 80.0 mm, whole length from inlet-to-outlet, 240.0 mm, and height, 62.5
mm. The Reynolds number based on the chord length is 1.6×106. The cell size of the
near-wall region is set to allow at least three points within the sublayer. In Liu’s study [5],
several cases with different inlet Mach numbers were reported. Here, only a transonic flow case

Figure 1. Log law profile by using the B–L model.
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Figure 2. Log law profile by using the J–K model.

with a peak Mach number of 1.27 over the bump (R=163 mm, the radius of the circular arc)
is studied. In the present computation, the inlet Mach number is set to 0.675 and the back
pressure is then adjusted to obtain a peak Mach number of 1.27 for comparison sake.

Boundary conditions for this channel flow were carefully handled with the available
experimental data. At the upstream edge of the bump, the inflow Mach number and
temperature are given as a free-stream condition. By the introduction of Riemann invariants
for one-dimensional inviscid flow normal to the boundary, the non-reflecting boundary
conditions are imposed. Flow quantities at this boundary are obtained in accordance with the
condition that the Riemann variables for incoming and outgoing waves are constant along the
normal direction. For the outflow boundary, all the flow quantities are linearly extrapolated
from the flow domain, while the pressure is prescribed according to experimental measurement.
At the solid walls, no-slip and no-injection boundary conditions are imposed, i.e. the zero
normal fluxes of mass, momentum and energy are imposed. In addition, the solid surfaces are
assumed to be adiabatic and the pressure gradient normal to the wall at the surface is
considered to be zero.

All the computations are carried out on a NEC-SX3 supercomputer. Several different grids
have been tested in the computation. The grid used here has been proved to be sufficiently
refined. The iteration number used is 6000 for each calculation using the B–L or J–K model.
The order of residual reduction for both computations is more than 4. The CFL number is
chosen as 1.5 and both second-order and fourth-order artificial viscosities are used for reaching
a stable shock-capturing calculation. For the B–L model case, the CPU time usage is 0.72 s
per iteration, while it is 1.12 s per interaction for the J–K model.

Figure 4 presents a comparison between experimental interferogram and computed results
using the B–L and J–K models. The zebra contour lines represent isodensity plotting. A
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Figure 3. Grids for arc-bump channel flow.

curved shock is predicted by both models and agrees with the actual shock pattern. However,
the prediction of the J–K model gives better agreement than that of the B–L model.

In Figure 5, by using both models, the predicted pressure distributions along the bump wall
and the top wall are given and compared with the experimental data. Generally, the J–K
model can better predict the pressure on both walls than the B–L one. A ‘plateau’ corre-
sponding to the shock-induced separation region on the lower wall is well predicted. The
velocity field details near the separation region are shown in Figure 6 using the B–L model
and Figure 7 using the J–K model, where a recirculation zone is clearly present.

The skin friction coefficient on the bump wall can be obtained by using both models and the
results are presented in Figure 8. A comparison is also presented in this figure between

Figure 4. Comparisons of density contours by experiment, the B–L model and the J–K model.
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Figure 4 (Continued)

experimental data and the computed results by using other methods in Liu’s study. It is
observed that a separation region is clearly predicted with a very satisfactory accuracy with
both the B–L and J–K models, with the latter predicting the size of the separation zone more
accurately. All the methods in Liu’s paper failed to do so. After the reattachment, however, the
predicted skin friction coefficient by the J–K model is higher than both the B–L model’s
results and the experimental data. It seems that in the attached flow region, the B–L model
can probably give a better skin friction coefficient than the J–K model.
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Figure 5. Pressure distribution on walls by using (a) the B–L model and (b) the J–K model.

Figure 6. Velocity field in separation region by using the B–L model.
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Figure 7. Velocity field in separation region by using J–K model.

The velocity profiles at different locations have been obtained by Liu and Squire’s experi-
ment and are used here for validating the present computation. In Figure 9, the computed
velocity profiles are compared with measurements. The predictions by the present modified
B–L and J–K models agree with the experimental data very well.

Figure 8. Skin friction coefficients on the lower bump wall.
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Figure 9. Comparison with experiment of velocity profiles.

5. CONCLUSION

(1) Two turbulence models, the B–L model and the J–K model, hvae been used in the present
study. In order to improve the predictive capability of both models to deal with a complicated
flow case, where shock–boundary interactions and subsequent separation occur, some modifi-
cations have been adopted.

(2) Especially for internal flow, a multiwall situation has been considered in the implemen-
tation of both models. The ODE in the J–K model is treated in a special way in that the
equations along each wall around the flow field are solved respectively by projecting all the
relevant quantities on to the wall surface. This proves to be successful.

(3) An explicit algorithm is used to obtain the solution of the ODE in the J–K model.
Difficulties were encountered in obtaining stable and convergent solutions by this method.
Therefore, a point-implicit treatment to the source term is introduced in the numerical solution
of the J–K equation. This was shown to be a critical measure in ensuring a converged solution.

(4) A Q3D arc-bump channel flow with shock–boundary layer interactions and induced
flow separation was studied. Both models can give satisfactory predictions for the major flow
characteristics and also details of the mean flow field. After applying modifications and special
treatments, the J–K model is found to give better predictions for the computation of separated
flows.

6. NOMENCLATURE

chord length of the circular-arc modelc
cf skin friction coefficient

artificial dissipation along the j-directionDi

e internal energy per unit mass
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E total internal energy per unit mass
f index of cell faces
Fb flux vector

g=tm
−1/2g

H enthalpy
J Jacobian matrix
l mixing length for turbulent viscosity
Lm dissipation length scale
M flow Mach number

local normal distance from the walln
n+ law of the wall co-ordinate
n� normal unit vector

pressurep
Qc, Qv convective flux and viscous flux
t time
T temperature
u, 6, w mean velocity components in the x-, y- and z-directions
ut wall shear velocity
Ub mean velocity vector (u, 6, w)

velocity vector projected on the surface where Reynolds stress is maximum(Um,Vm,Wm)

control volumeDV

Greek letters

g specific heat ratio
scaling factor (based on the spectual radii of flux Jacobian matrix)l(

d thickness of boundary layer
r density
m dynamic viscosity
ml molecular viscosity
mt turbulent viscosity
(mt)i, (mt)o inner layer turbulent viscosity, outer layer turbulent viscosity
j, h, z local curvilinear co-ordinates
v� vorticity vector

coefficients for artificial dissipation of second difference typek (2), e (2)

k (4), e (4) coefficients for artificial dissipation of fourth difference type
V flow domain

boundary of the flow domaindV
t̄̄ stress tensor
tm maximum Reynolds shear stress across boundary layer

wall shear stresstw

Superscripts

m stage index of multistage scheme
n time step counter
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Subscripts

evaluated by equilibrium modeleq
laminar quantityl

m maximum value across the boundary layer
t turbulent quantity
w value on a wall
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